Integrated and Circular Model of Straw Residue Utilization

Anshuman Varma
Programme Officer and Deputy Head
Centre for Sustainable Agricultural Mechanization (CSAM)
United Nations ESCAP
Burning of Crop Residue

• Crop residue (straw) burning is a serious concern in many countries of the Asia-Pacific region leading to:
 ➢ Negative impact on soil nutrients, pH, moisture, organic matter, fertility
 ➢ Air pollution, transboundary haze, GHG emissions
 ➢ Public health hazard, transportation disruptions

• Residue burning not aligned with sustainable intensification in agriculture

Picture courtesy: Tribhuvan University, Nepal
Straw in selected sub-regions

South and Southeast Asia generate an estimated >400 Mt of rice straw alone a year

<table>
<thead>
<tr>
<th>Crop</th>
<th>straw-grain ratio</th>
<th>India</th>
<th>Bangladesh</th>
<th>Nepal</th>
<th>Sri Lanka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
<td>Straw</td>
<td>Grain</td>
<td>Straw</td>
</tr>
<tr>
<td>Rice</td>
<td>1.28</td>
<td>108.8</td>
<td>139.26</td>
<td>34.57</td>
<td>44.25</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.38</td>
<td>96.6</td>
<td>133.30</td>
<td>1.30</td>
<td>1.79</td>
</tr>
<tr>
<td>Maize</td>
<td>2.05</td>
<td>26.15</td>
<td>53.60</td>
<td>2.75</td>
<td>5.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop</th>
<th>Straw-grain ratio</th>
<th>Indonesia</th>
<th>Vietnam</th>
<th>Myanmar</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grain</td>
<td>Straw</td>
<td>Grain</td>
<td>Straw</td>
</tr>
<tr>
<td>Rice</td>
<td>1.28</td>
<td>70.84</td>
<td>90.68</td>
<td>44.07</td>
<td>49.59</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maize</td>
<td>2.05</td>
<td>18.51</td>
<td>37.94</td>
<td>5.19</td>
<td>10.64</td>
</tr>
</tbody>
</table>

Source: Status of Straw Management in Asia-Pacific and Options for Integrated Straw Management (CSAM, 2018)
Key reasons for Straw Burning

- Low perceived **economic value**
- **High cost** of straw collection, transportation and storage, partially caused by the shortage of rural labour
- **Lack of time** for straw to decompose before next seeding cycle
- **Lack of adequate machinery and techniques** to treat straw residue
- **Low awareness** of the impacts of burning on the environment, food security and health

Picture courtesy: Tribhuvan University, Nepal
CSAM Regional Initiative on Integrated Management of Straw Residue: Circular Model of Straw Utilization

Promoting application of agricultural machinery and practices for sustainable, circular use of straw residue as fertilizer, fodder, substrate for mushroom-growing, and biogas production

Priorities for country pilots (on wheat-maize system and extended to rice):

- Sensitize stakeholders and highlight economic benefits of sustainable & integrated straw residue management to farmers
- Incentivize adoption of sustainable mechanization solutions and encourage adaptation to match local needs
Pilot Project on Integrated Straw Management in China (wheat-maize system)

- Multi-stakeholder effort engaging research institutions (China Agricultural University), local government and local farmers cooperative
- Use of straw as fertilizer, fodder, new energy resource and substrate
- Positive outcomes (2019 to 2022):
 - Increase in soil organic matter
 - Increase in net income of farmers

Picture courtesy: China Agricultural University
Pilot Project on Integrated Straw Management in Viet Nam

• With Sub-Institute of Agricultural Engineering and Post-Harvest Technology
• Positive outcomes (2018 to 2019):
 ➢ Promoted ‘In-door mushroom growing technology’ applying a steam sterilizer and water supplying system
 ➢ Indoor mushroom growing technology demonstrated as superior to traditional/ outdoor method:
 ❖ Higher mushroom yield - rice straw using efficiency of approximately 26% compared to 13-15% in traditional method
 ❖ Lower production cost
 ❖ Higher mushroom quality
 ➢ Substrate after mushroom growing used as a natural fertilizer - considerably reduced application of chemical fertilizers and lowered production cost
 ➢ Improved porosity and fertility of soil & reduced negative impact on environment from straw burning

Picture courtesy: VIAEP
Regional Initiative Extended to New Pilots in Cambodia, Indonesia and Nepal in 2021

• **Approach** implemented:
 - Establishment of pilot sites
 - Field trials of machinery
 - Modification and adaptation of the machinery
 - Capacity building and community awareness sessions
 - Regional study tour for knowledge exchange

• **Pilot Model:**
 - In-situ and ex-situ utilization of straw (eg. as fodder and fertilizer) based on local needs
 - Machinery used: Minimum-tillage seeder, baler, direct seed drill, handy straw cutter...
Regional Knowledge Exchange

Integrated Straw Management Regional Study Tour, 7-10 November 2019, Ludhiana, India

Virtual Workshops and Demonstrations, 28 October 2020 & 25 October 2022, Laixi, China

Regional Study Tour on Mechanization Solutions for Straw Management, 21-27 November 2022, Thailand
16 March 2022

Good Practices in South-South & Triangular Cooperation in LDCs
Won the 2nd ESCAP Innovation Awards & the ‘best business pitch’ - Nov. 2022
Key Lessons and Takeaways

- Straw burning is a shared and transboundary concern in the Asia-Pacific – challenge for sustainable intensification, nature positive production and related SDGs

- Alternative uses of straw – supported by agricultural machinery - can provide sustainable solutions but we need:
 - Identification of context-specific alternatives
 - Community engagement and local champions
 - Local adaptation
 - Training and capacity building
 - Multi-stakeholder approach
 - Regional/international cooperation and exchange
Thank you