Crop Residue Management in South Asia
Advancing Sub-Regional Cooperation for Sustainable, Climate-smart and Integrated Management of Crop Residues

C R Mehta
Director, ICAR-Central Institute of Agricultural Engineering, Bhopal, INDIA

15 September 2022

Hybrid mode
Venue: ESCAP Sub-regional Office for South and South-West Asia (SSWA)
New Delhi, India
Large variability exists in the estimates of production, utilization and on-farm burning of crop residues in the region.
Crop-wise Residue Production in the Region

Biomass in the Region (Mt)

- Nepal: 5.98 Mt (53%)
- Bangladesh: 2.23 Mt (20%)
- Pakistan: 7.95 Mt (14%)
- India: 225.48 Mt (39%)

Crop-wise Production:

- Rice
 - Nepal: 3.08 Mt (27%)
 - Bangladesh: 5.70 Mt (8%)
 - Pakistan: 145.45 Mt (25%)
 - India: 66.58 Mt (11%)

- Wheat
 - Nepal: 5.98 Mt (53%)
 - Bangladesh: 2.23 Mt (20%)
 - Pakistan: 7.95 Mt (14%)
 - India: 119.17 Mt (20%)

- Maize
 - Nepal: 5.30 Mt (10%)
 - Bangladesh: 1.86 Mt (2%)
 - Pakistan: 9.85 Mt (18%)
 - India: 27.88 Mt (5%)

- Sugarcane
 - Nepal: 2.78 Mt (5%)
 - Bangladesh: 3.08 Mt (5%)
 - Pakistan: 25.25 Mt (45%)
 - India: 145.45 Mt (25%)

- Cotton
 - Nepal: 65.90 Mt (90%)
 - Bangladesh: 77.18 Mt (90%)
 - Pakistan: 7.95 Mt (53%)
 - India: 66.58 Mt (11%)

Note: The values are in millions of tons (Mt).
Utilization of Crop Residue in the Region

<table>
<thead>
<tr>
<th>Straw uses</th>
<th>Nepal</th>
<th>Bangladesh</th>
<th>Pakistan</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal feed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bedding material for cattle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Residue incorporation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Residue mulching</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Domestic fuel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Value added items</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Compost making</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paper production</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Building material</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Mushroom production</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Bio-gas production</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Briquetting of crop residues</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Bio-CNG/Compressed bio-gas (CBG)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Power generation from biomass</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bio-ethanol production</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Bio-char</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>
Crop residue burning is influenced by the agricultural practices that include:

- Crop cycle and type,
- Harvesting season,
- Potential use of residues,
- Agricultural mechanization,
- Feasibility of on-farm residue collection and transportation and
- Profitability of alternate options

Crop Residue Burning in the Region

<table>
<thead>
<tr>
<th>Country</th>
<th>Crop residue burning (Mt/year) (Total)</th>
<th>Major crops residue burning</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>140 (683)</td>
<td>Rice, wheat, cotton, sugarcane</td>
</tr>
<tr>
<td>Pakistan</td>
<td>- (56)</td>
<td>Rice, sugarcane</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.22 (73)</td>
<td>Wheat, Aman rice</td>
</tr>
<tr>
<td>Nepal</td>
<td>- (11)</td>
<td>Rice (Tarai)</td>
</tr>
</tbody>
</table>
Crop Residue Burning in the Region – Main Reasons

• Very short time interval (10–20 days) and resources for sowing of next crop (Rice-wheat cropping system) – India, Pakistan and Nepal
• Use of combine harvesters and lack of straw management machinery
• Easiest and cheapest way for quick disposal of crop residues
• Labour scarcity and high cost of collection and storage
• Lack of storage facilities and market opportunities
• High cost to plough back stubbles mechanically
• Paddy straw is less preferred as ruminant feed – India and Pakistan
• Lack of awareness about the downside of crop residue burning
• Disproportionate incentives/subsidies to manage crop residues
• Low level of skills and knowledge about CRM machinery
Consequences of Crop Residue Burning - Highlights

- Burning of 23 million tonnes of rice residues in **north-west India** - loss of about **9.2 Mt of C equivalent (34 Mt CO$_2$ equivalent)** and a loss of about **1.4×105 t of N** per year.
- Over **60,000 people died in Pakistan from high level of fine particles in the air**, one of the world's highest death tolls from air pollution (WHO, 2015)
- Total agricultural emissions from **Bangladesh** are expected to reach **87 Mt CO$_2$e by 2030** and **100 Mt CO$_2$e by 2050** (CIMMYT, 2021)
- Burning of wheat straw in **Bangladesh** results in loss of **100% nitrogen, 70-90% sulphur, and 20-40% phosphorous and potassium**.
- In **Nepal**, emission from crop residue burning increased from **85 ktCO$_2$e in 1961 to 160 ktCO$_2$e in 2018**.

➢ **Air pollution from straw burning is a cross border/trans-boundary issue – need sub-regional cooperation**
Examples of Best Practices in the Region

In-situ Management of Crop Residues

- **Residue mulching** - Zero till drill and Happy seeder machine, preferably after operation of combine with SMS system (India, Pakistan & Nepal)
- **Residue incorporation** - Paddy chopper cum spreader and MB plough/Disc plough/Rotary tiller - require lot of energy (India, Pakistan & Nepal)

In-situ method of straw management
- Saving of 30 - 35% nitrogen, 20 - 25% potassium and 25% of irrigation water
- Increase in organic carbon, and
- Help in restoring microbial activities in the soil.
Examples of Best CRM Practices in the Region

In-situ Management of Crop Residues – Equipment/Machinery being used

INDIA
- Mulcher
- Combine with SMS
- Sugarcane trash chopper-spreader
- Zero till drill
- Happy seeder
- Super seeder

PAKISTAN
- PTO powered disc plough
- Stubble chopper
- Combine straw spreading kit
- Rocket seeder
- Pak seeder

Provided subsidy on straw chopper and Pak seeder (2021)

NEPAL
- Rotary mulcher
- PT roto till drill
- Zero till drill
- Happy seeder

Used some implements on limited scale

BANGLADESH
- Strip till planter
- Zero till planter

Used some implements under CIMMYT
Examples of Best CRM Practices in the Region

Equipment used for Ex-situ Management of Crop Residues

- Straw Reaper
- Straw Rake
- Combine with Straw Reaper Attachment
- Straw Baler-Round
- Straw Baler - Rectangular

• Help in collection of straw for different uses
Examples of Best CRM Practices in the Region

Ex-situ Management Practices of Crop Residues

- Composting of paddy straw
- Biogas plants for paddy straw at domestic/community level
- Biomass pellets from crop residues for use as fuel in power plants
- Briquetting of crop residues as an industrial fuel supplement
- Power generation from biomass
- Bio-CNG production from paddy straw
- Ethanol production from crop residues
Common Challenges & Gaps in Management of Crop Residues

<table>
<thead>
<tr>
<th>In-Situ Management</th>
<th>Ex-Situ Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Lack of adoption of CA</td>
<td>▪ High cost of collection and transportation of residues</td>
</tr>
<tr>
<td>▪ Non-availability of high hp (≥ 50) tractors</td>
<td>▪ Lack of assured supply of residue</td>
</tr>
<tr>
<td>▪ Expensive and seasonal use of CRM machinery</td>
<td>▪ Lack of assured markets for processed by-products</td>
</tr>
<tr>
<td>▪ Use of combine harvesters</td>
<td>▪ Lack of network of collection centres and supply chain management (SCM) facilities</td>
</tr>
<tr>
<td>▪ Demand-supply gap - local manufacturers unable to meet needs of farmers</td>
<td>▪ Lack of technical and economic feasibility studies</td>
</tr>
<tr>
<td>▪ Additional management skills</td>
<td></td>
</tr>
<tr>
<td>▪ Apprehension of yield loss/returns</td>
<td></td>
</tr>
<tr>
<td>▪ Negative attitudes or perceptions</td>
<td></td>
</tr>
</tbody>
</table>

Other common issues

| ▪ Lack of relevant statistical information on availability, utilization and surplus straw resources |
| ▪ Lack of crop residue management policy |
| ▪ Subsidy & financial support to farmers and entrepreneurs |
| ▪ Incentives to farmers for not burning crop residues |
Action Plan and Way Forward

- Any solutions involving **long-haul transportation, expensive technology, or high capital investment** are less likely to succeed.
- Sustainable solutions - methods to feed the **nutrients in crop residues back into the soil**

In-situ management is to be preferred over ex-situ management

| Mechanization Intervention | Promotion of CRM machinery through promotion of CA practice
Dev. of small tractors/power tiller operated CRM machinery for small farmers
Dev. of multi-functional CRM farm machinery – increase use
Improve access to CA machinery at subsidized rates, promoting custom hiring system and providing soft loans to purchase implements
Large scale demonstrations, trainings and workshops |
|---------------------------|---|
| Institutional Interventions | Conduct **survey** to collect information on availability, utilization and surplus straw resources
Need of crop residues management policy for rationalizing various issues
Develop mechanism for crop residue biomass aggregation
Carbon credit schemes for farmers using CA and not burning residue
Enforcing appropriate legislation on **prevention of burning through incentives and deterrence** |
Action Plan and Way Forward

<table>
<thead>
<tr>
<th>Socio-economic Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bio-gas production from crop residues at domestic/community level (Bringing back fertilizer to field)</td>
</tr>
<tr>
<td>• Awareness creation about negative impacts of crop residue burning on human health and the environment through media campaigns and community programmes</td>
</tr>
<tr>
<td>• Capacity building on adaption of conservation agricultural practices</td>
</tr>
<tr>
<td>• Establishing self-help groups and encouraging unemployed youths to take up custom hiring of CRM machineries as a profession</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Technical Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ management is to be supplemented with ex-situ management techniques</td>
</tr>
<tr>
<td>• Biomass pellets from crop residues as a fuel substitution in thermal power plants</td>
</tr>
<tr>
<td>• Industrial level production of Bio-CNG/Compressed Biogas (CBG) from paddy straw</td>
</tr>
<tr>
<td>• Incentivise power generation from bio-mass</td>
</tr>
<tr>
<td>• Promote 2G biomass based ethanol plants in PPP mode.</td>
</tr>
</tbody>
</table>
Common Framework for Sub-regional Cooperation

- Conduct study on availability, utilization, surplus and burning of crop residues in South Asia
- Share equipment/technologies for in-situ management of crop residues
- Share knowledge of best practices of CRM in different countries through workshops/seminars/visits organised by CSAM
- Harmonization of testing standards for CRM machinery
- Explore policy harmonization for adaptation of CRM machinery.

➢ Need for a combination of technologies and incentives.
➢ Strategy - assign a real economic and commercial value to the crop residue and making burning an economic loss to the farmer.
Thank you