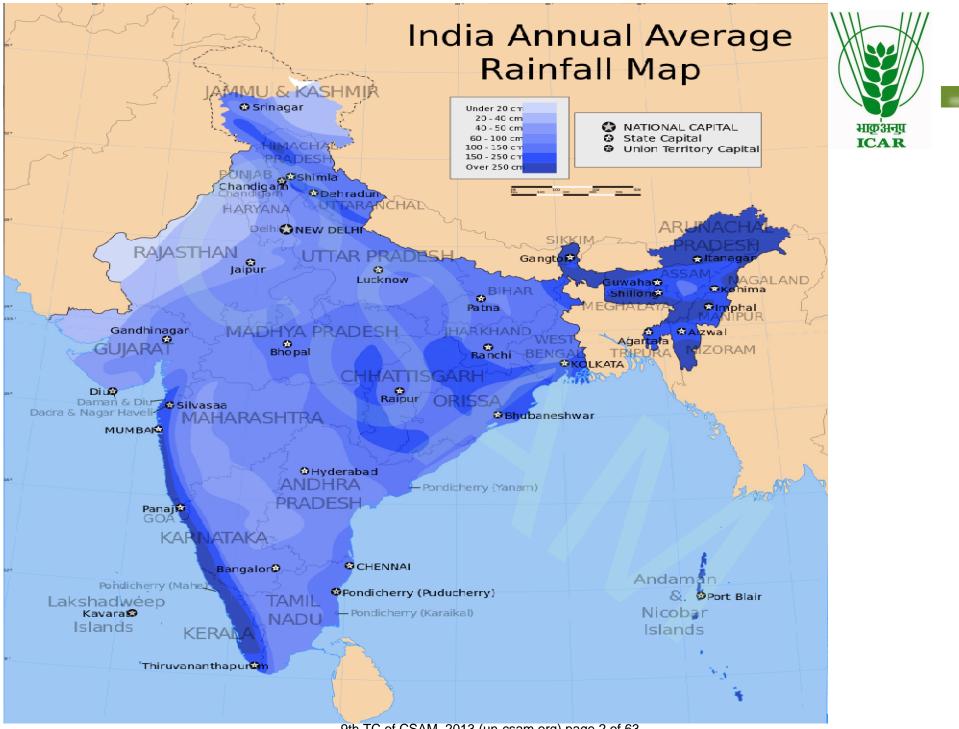


Sustainable Agricultural Mechanization


9th TC of CSAM

C. R. Mehta Project Coordinator, AICRP on FIM

Central Institute of Agricultural Engineering, Bhopal Indian Council of Agricultural Research, New Delhi, India

9th TC of CSAM, 2013 (un-csam.org) page 2 of 63

Major Cropping Systems in India माकुअनुप ICAR Rice – wheat (10.5 m ha) Rice – rice (5.89 m ha) Cotton – wheat (1.09 m ha) Soybean – wheat (2.23 m ha) Maize – wheat (1.86 m ha) P. millet - wheat (2.26 m ha) ξ ο

6

Indian Agriculture

- Net sown area: 140 million ha (42.6%)
- " Agricultural workers 263 million
- " Employs about 55% of the work force
- " Provides livelihood to about 60% of the population
- Contributes 14% to the Gross Domestic Product (GDP)
- "Yearly production
 - Food grains 259 million tonne (2012-13)
 - Fruits 76 million tonne (2011-12)
 - Vegetables 156 million tonne (2011-12)
- "No. of land holdings 138 million

Indian Agriculture

- ["] Small fragmented land holdings, hill agriculture and shifting cultivation
- " 15% farms are semi-medium (2-4 ha), medium (4-10 ha) and large (more than 10 ha) sizes
- 85% are small and marginal (< 2 ha)</p>

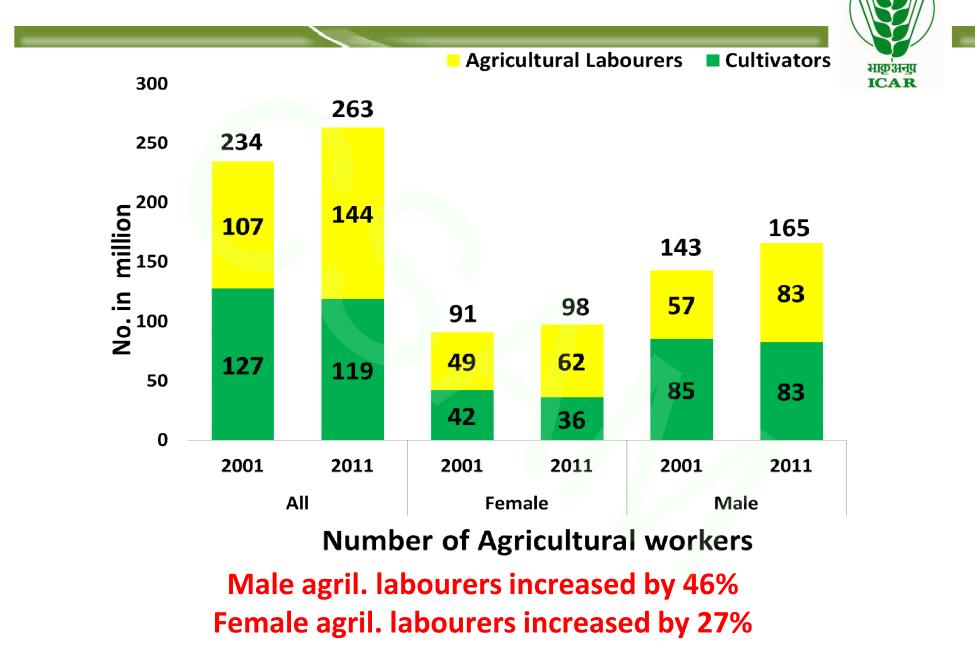
Approach to mechanization of Indian agriculture

- Improved equipment and
- Enhanced farm power supply

Maintain a socially desirable mix of human labour, draught animal power and mechanical power

Challenges

- India accounts for 2% of World's geographical area and 4% of water resources
- But, it supports 17% of total human population and 15% of livestock
- Shrinkage of farm holding
- Scarcity of farm worker in peak seasons due to MGNREGA.
- The challenges in 21st century:
 - Food, nutritional and livelihood security
 - Reducing rural poverty through inclusive growth of farm mechanization
 - Reduce or reverse natural resource degradation, especially land

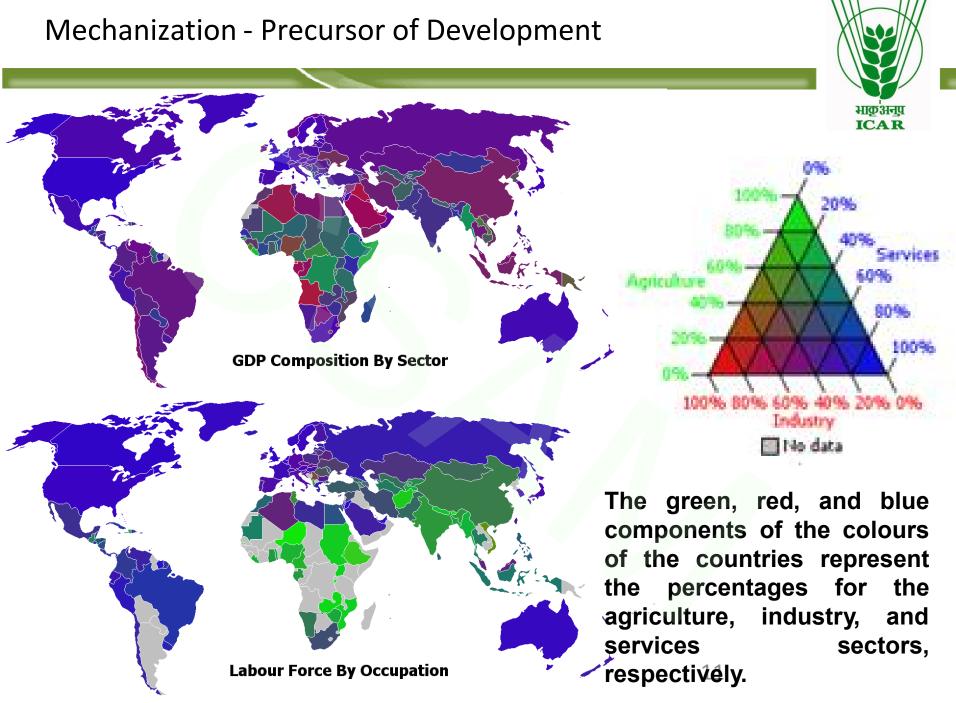

These challenges needs to be resolved in the face of uncertainties of 'Climate Change'.

Population Dynamics of Indian Agricultural Workers (No. in million)

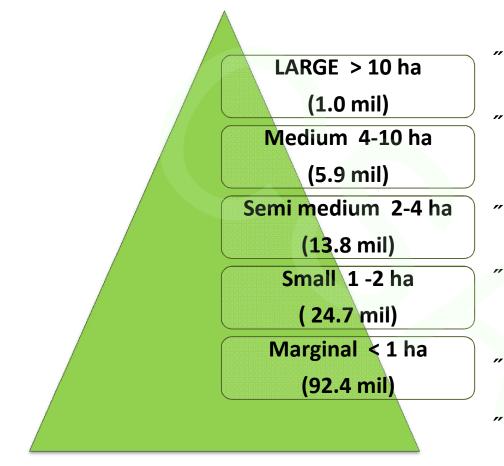
Particulars	2001	2011	2020
Country population	1029	1211	1323
No. of workers as % of population	39	39.8	42.8
Total no. of workers	402	482	566
% of agricultural workers to total workers	58.2	54.6	40.6
No. of agricultural workers	234	263	230
% of females in agril. work force	39	37.2	45.0
No. of male agricultural workers	143	165.7	126.5
No. of female agricultural workers	91	97.31	103.5

Cultivators reduced by 7%, Agril. labourers increased by 35%

Global Ranking of India in Farm Production and Productivity


			ICAR
Crop	Production	Production in	Productivity
	Rank	2011 (million t)	Rank
Paddy	2^{nd}	157.90	30 th
Wheat	2^{nd}	86.87	22^{nd}
Maize	6 th	21.76	35 th
Groundnut	2^{nd}	6.96	40^{th}
Rapeseeds	3 rd	8.18	28 th
Pulses	1 st	0.70	44 th
Soybean	5 th	12.21	44 th
Potato	2^{th}	42.34	26 th
Sugarcane	2^{nd}	342.38	9 th
Fruits	2^{nd}	76.40	-
Vegetables	2^{nd}	155.90	-

Crop Scenario 5143.4 2318.1 相關為計畫 ICAR 7941.2 6590.1 10000 2988.6 ROPE AMERICA NO ASIA 6448.2 Russia 2976.7 2840.8 4365.0 USA China 9000 2040.1 INDIA Egypt LATIN AM 1603.3 Brazil Paddy Wheat Australia


India very low on Productivity

Yield of principal crops in developed nations is much higher than other developing nations, one of the reason being less adoption of automation

* Figures represents Yield of major crops during 2009 ** Yield is defined as kg/ha Source: FAOSTAT

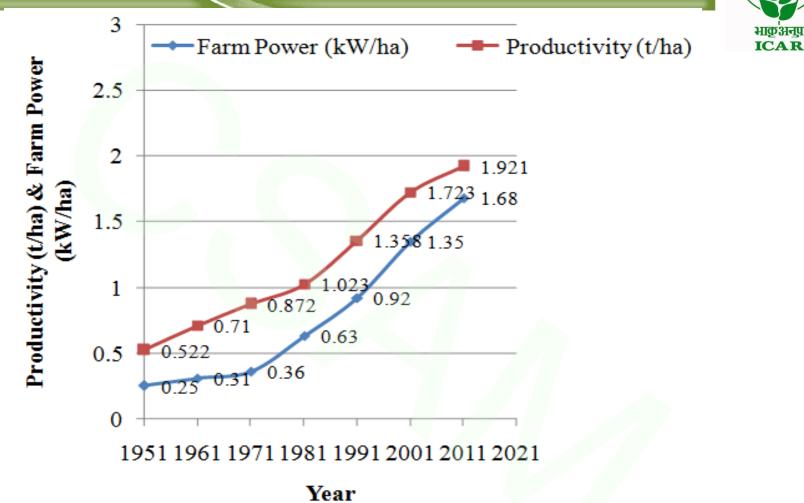
Indian Agriculture

Average land holding and no. of farmers

Highest arable land - 47% of total land against Avg. 11% in the world

ICAR

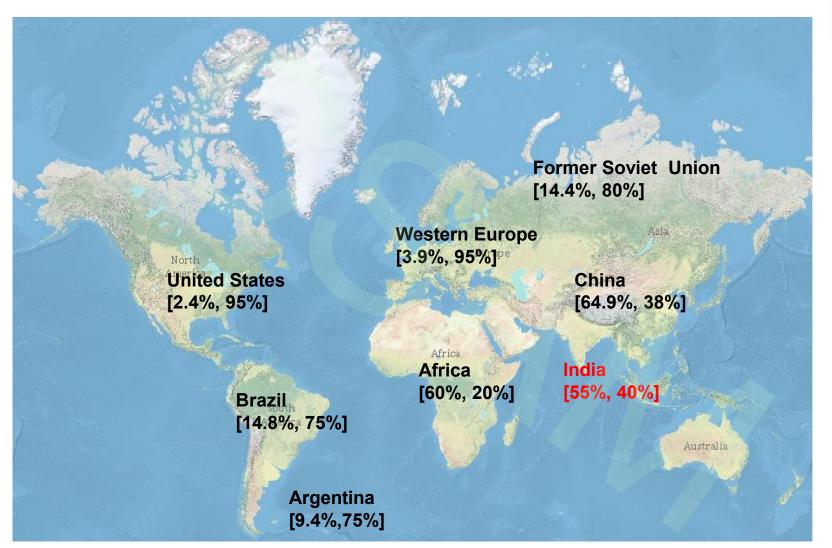
- **Round the year cultivation -** 20 Agroclimatic regions and 46 soil types suited for round the year cultivation
- **Ranks first** in production of Pulses, Sorghum, Jute and allied fibers
- Second largest producer of Wheat, Rice, Groundnut, Tea, Fruits and Vegetables, Sugarcane
- **Third largest producer** of Mustard, Potatoes, Cotton lint, etc.
- **137.8 million cultivators,** over 5.0% own > 4 ha. Avg farm land size <2 ha,


Bottom of Pyramid Country; Affordability, Equipment size are key to success. Emerging - Cooperative ownership model/custom hiring, use of high end equipment

Cropping Intensity, Power Availability on Indian Farms

Year	Cropping intensity (%)	Productivity (t/ha)	Power available (kW/ha)	Power per unit production (kW/t)	Net sown area per tractor (ha)
1975-76	120	0.94	0.48	0.51	487
1985-86	127	1.18	0.73	0.62	174
1995-96	131	1.50	1.05	0.70	84
2005-06	135	1.65	1.47	0.89	47
2010-11	137	1.92	1.68	0.88	31

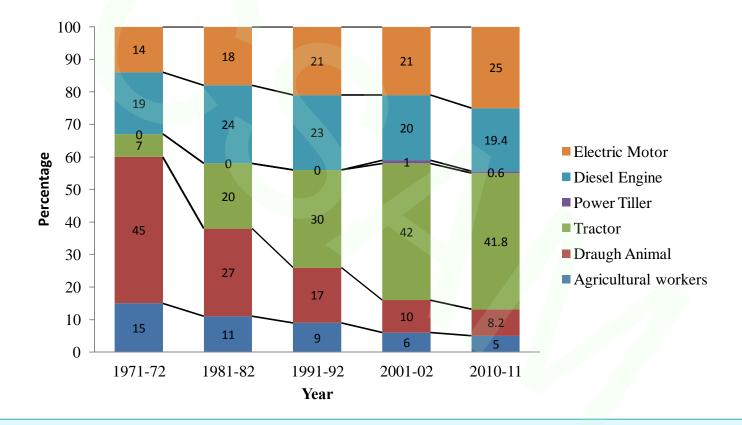
Farm Power Availability and Productivity of Food Grains in India (1951-2011)



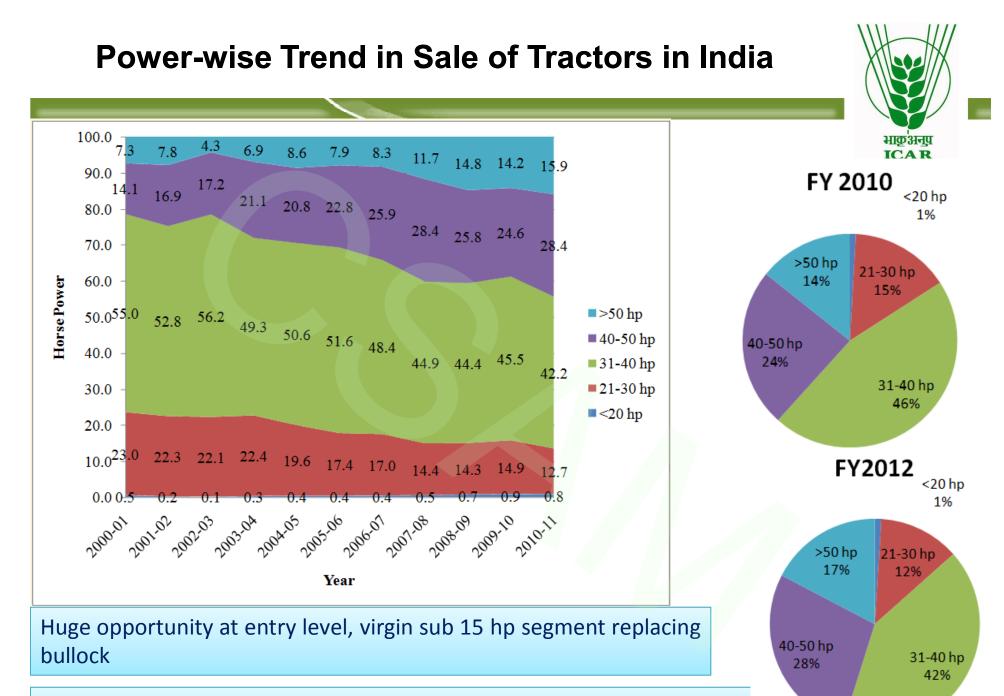
Agricultural productivity has a positive correlation with farm power availability

9th TC of CSAM, 2013 (un-csam.org) page 14 of 63

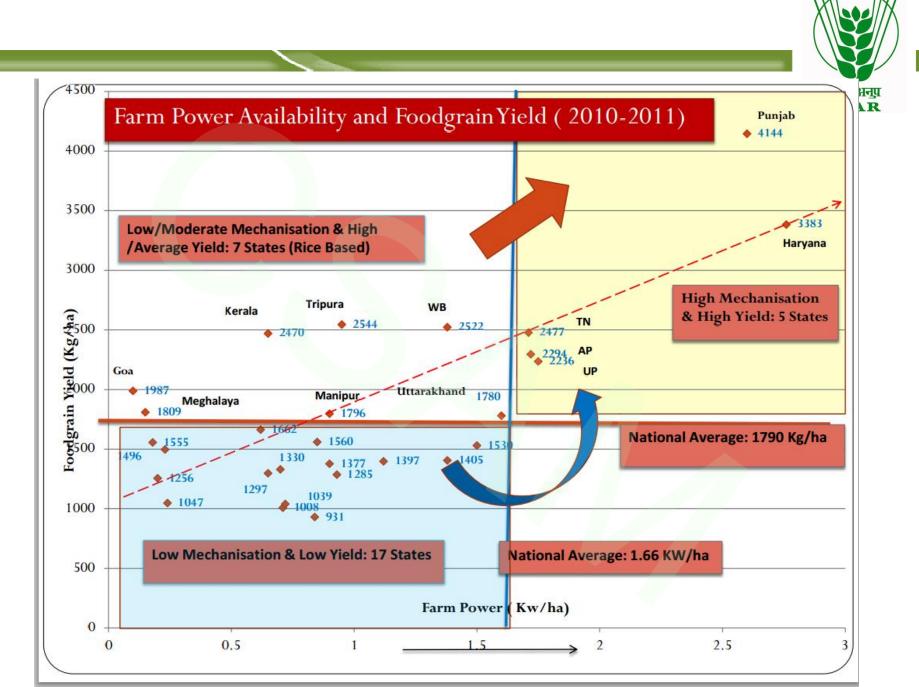
Population Engaged in Agriculture Vis-a-vis Level of Farm Mechanization


Higher share of labour (55%) with lesser contribution to farm mechanisation (40%) in India makes farming less remunerative and leads to farmers' poverty

9th TC of CSAM, 2013 (un-csam.org) page 15 of 63

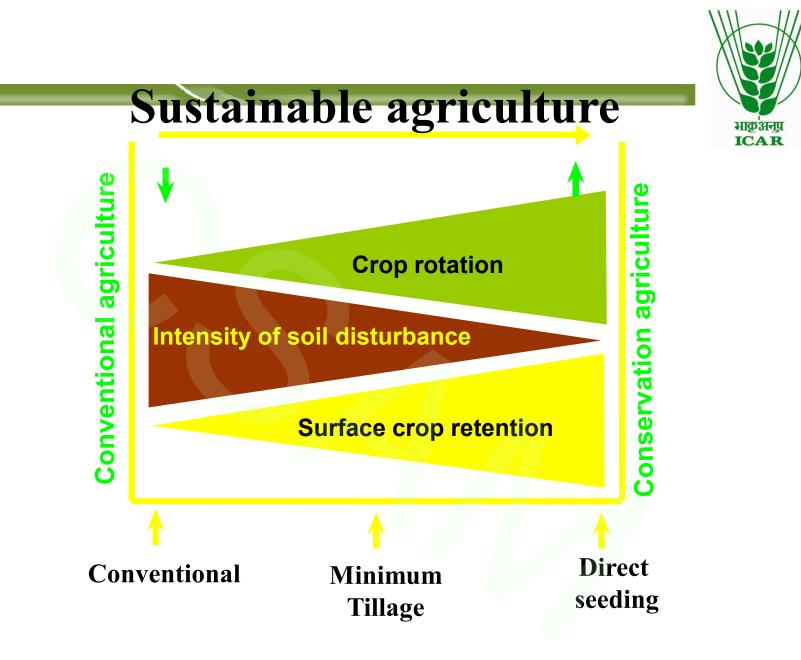

Power Availability Trend....

HID 3HIL ICAR


The changing face of technology is leading to increase in mechanisation and this trend is expected to continue in near future

Share of agricultural worker & draught animals came down from 60.5% in 1971-72 to 13.2% in 2010-11

Sales to witness polarization towards high- and low-power segments


9th TC of CSAM, 2013 (un-csam.org) page 18 of 63

Level of Farm Mechanization in India

Operations	Percentage
Soil working and seed bed preparations	42
Seeding and planting	29
Plant protection	34
Irrigation	37
Harvesting and threshing	60-70% for wheat and rice and < 5% other crops

Overall about 40-45 %

- Minimum or no soil disturbance (Zero tillage, No-tillage)
- "Permanent soil cover (residues or green manure cover crops (GMCCs)
- Crop rotation
- Integrated disease and pest management
- No burning

Tractor drawn laser land leveller

Used for micro levelling of field and pulling loose soil from one place to other

9th TC of CSAM, 2013 (un-csam.org) page 22 of 63

Performance evaluation of laser guided land leveler

S. No	Variables	Values
1.	Forward speed, km/h	4.0-6.0
2.	Field capacity, ha/h	0.10-0.20
3.	Standard deviation of reduced level after leveling, cm	0.55-0.90
4.	Leveling index, cm	0.44-0.63
5.	Volume of soil tilled, m ³	50-90
6.	Cost of leveling, Rs./ha	1670-3000

Machinery for Manure Application

Animal drawn manure spreader

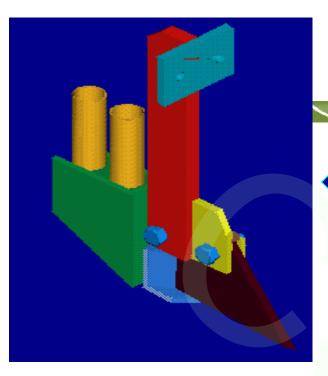
- Developed at SHIATS, Allahabad and CIAE Bhopal
- Hopper capacity: 3.75-4.00 q
- Width of operation: 1.1 to 1.2 m
- Application rate: 4-18 t/ha
- Field capacity: 0.18-0.20 ha/h

Tractor operated farm yard manure spreader

Capacity : 2 tonne Field capacity: 0.38 ha/h at 2.5 km/h Type of spreading unit: A cylinder of 40 mm diameter having 12 numbers of beaters on periphery.

AICRP on Farm Implements and Tractor-operated Rotavator

- Prepares dry seed bed in one operation and in heavy soils in two operations. It mixes crop residue and weeds in soil effectively.
- Field capacity: 0.25-0.40 ha/h
- The machine saves about 40-60% of time and 25-40% of fuel consumption as compared to the conventional tillage implements.
- Field condition after rotavator operation



Plastic Mulch Laying Machine

It has great potential for adoption in vegetable cultivation Field capacity: 0.23 ha/h Efficiency of plastic laying machine: 75%

Energy & moisture conservation Saving in time : 40-70% Saving in fuel : 64% Saving in water:10-15 %

Inverted 'T' furrow opener for Zero till-drill

Zero till-drill in operation

(5 million ha area)

CAM Developed in India

Machine parameters	Zero till drill	Strip till drill	Roto till drill	Slit till drill	Conventional (3 Tillage + Sowing)
Working width, mm	1600-2000	1800	2000	1800	1850
Weight, kg	210	350	350	300	-
Unit price, Rs.	30000	60000	70000	55000	20000 + 25000
Time, h/ha	3.23 (70.1)	4.17 (61.2)	3.45 (68.1)	2.50 (76.8)	10.80
Fuel used, l/ha	11.50 (66.8)	17.50 (49.4)	14.80 (57.2)	10.00 (71.1)	34.60
Operational energy, MJ/ha	650 (67.2)	1002 (49.3)	784 (60.3)	565 (71.4)	1976

CAM: Economic impact

Particular (s)	Zero till seeding	Strip till seeding	Roto till seeding	Slit till seeding	Conventional (3 Tillage + Sowing)
Cost of operation, Rs./ha	1400 (58.8)	2000 (41.2)	1800 (47.1)	1000 (70.6)	3400
Saving, Rs./ha	2000	1400	1600	2400	-
Command area, ha	45	30	40	50	-
Benefits, Rs./year	90000	42000	64000	120000	-
No. of units	25000	500	2000	05	-
Annual benefits, Rs., million	2250	21	128	0.6	-

Tractor operated Raised bed planter inclined plate type

Field capacity -0.2 ha/h Saves - 20-30% water through furrow irrigation

Suitable for sowing of wheat, winter maize and other crops on ridges.

Tractor operated Raised bed planter

inclined plate type

Wheat

Crops sown on raised bed

Lady**s** finger

9th TC of CSAM, 2013 (un-csam.org) page 31 of 63

Bed planting on fresh and permanent beds

				भाकुं अनुप ICAR
Particular	Planting on fresh beds with tillage	Planting on permanent beds	Flat sowing zero tillage	Conv. Flat sowing
Time required, h/ha	13.0	5.0	3.2	10.8
Operational energy, MJ/ha	2605	1154	650	1976
Cost of operation, Rs./ha	4300	1750	1400	3400
Savings over conv. practice, Rs./ha	-	1650	2000	-
Command area, ha	-	30	45	-
Annual benefit, Rs./ha	-	49500	90000	-
No. of units	-	500	25000	-
Annual benefits, Rs., million	-	25	225	-

Pre-emergence herbicide strip applicator

Rice Transplanting Traditional Method 4-Row Rice Transplanter

- Involves a lot of drudgery due to operation in bending posture.
- **Output 40 m²/h**

Field capacity Cost Power source Operating speed Bending is avoided : 135 m²/h : Rs. 10000/-: 1 person : 0.5 km/h

ICAR

Lowland Paddy Seeder

AICRP on Farm Implements and Machinery

Results in saving of seed, labour and water

Field capacity Cost of the unit Cost of operation Seed rate Row spacing

- : 0.06 0.12 ha/h
- : Rs. 4000 5700/-
- : Rs. 450 per ha
- : 50 kg/ha
- : 200 mm (8 row)

- **Field capacity**
- Cost of the unit
- Cost of operation : Rs. 400/ha
- Saving in labour and time : 72%

- : 0.65 ha/h
- : Rs. 30,000/- (attachment)

9th TC of CSAM, 2013 (un-csam.org) page 36 of 63

SRI Planting Manual Method

9th TC of CSAM, 2013 (un-csam.org) page 37 of 63

SRI Self-propelled Transplanter (TNAU)

Self-propelled reaper binder

 ✓ Field capacity = 1.5-2.0 ha/day
 ✓ Grain losses = 2-5% for wheat 1-5% for paddy Cuts the crop and makes the bundle of about 5 kg and drops in the field.

High capacity multi-crop thresher

- " Used for threshing of cereals, pulses & oil seeds crops.
- The grain output capacity
 - . Wheat 16-20 q/h
 - . Raya 8-10 q/h
 - . Gram 6-8 q/h
 - . Green gram 4-5 q/h
- *Threshing efficiency* - 98-99%,

Self-propelled Rice Combine (CLASS) Field Capacity: 4 ha/day Cost : Rs. 16.00 lakh

Tractor Mounted Combines Field capacity: 4 ha/day Cost: Rs. 12.50-14.00 lakh

Tractor operated straw reaper (combine)

AICRP on Farm Implements and Machinery

भाकुअनुप ICAR

Tractor operated straw reaper with trailer

Field capacity : 0.4 ha/h Cost: Rs. 3.25 lakh

Hay rake in operation to collect paddy straw

Straw baler being used to make bales of paddy straw

9th TC of CSAM, 2013 (un-csam.org) page 44 of 63

Bio-fuels and renewable energy

- Contribution of the Renewable energy to Farm power availability is 1443 MW i.e. 0.7%
- Renewable Energy technologies like solar, biomass, hydro, etc are deployed both in rural and urban areas to curb the growing gap between the demand and supply of power.
- A target to harness 20000 MW of solar energy by 2022 has been set up under Prime Minister Solar Energy Mission
- Indian clean development mechanism projects cover a range of sectors viz power generation from renewable energy, particularly wind and hydro power, biomass applications, waste heat and energy recycling.

Large Capacity Fixed Dome Type Biogas Plants

Capacity: 10 to 110 m³ gas/day

Digester & gas dome made of brick masonry

Water requirement - reduced by up to 70%

Cost of plant -50% less than KVIC 110 m³ fixed dome biogas plant at a farmer's site at village Malsian (Distt. Jalandhar)

Plants set-up in Punjab, Raj., MP, MS, Karnataka & Goa

Walk-in-type Solar Tunnel Dryer for Agroindustrial Applications

Surgical cotton drying at M/s Raj Surgical, Udaipur

Three units each of 3.75 m x 19 m (1800 kg cotton/batch) MC 40% \rightarrow 5% (one day), Investment: Rs. 3.30 lakh Economic benefit – Rs. 172250/unit/year over conventional system

These dryers are also used for drying of coconut splits, gooseberry, grapes, chillies, stevia leaves etc.

Forced Circulation Solar Dryer

Forced circulation solar dryer equipped with composite SAHs installed in a Gujarat State Forest Development Corporation's Unit at Vadodara Unglazed flat plate type – Rs. 3,000/m² area

Packed bed type SAH panels installed on the roof of M/s Raghav Wollen Mills, Ludhiana

Cost of packed bed type – Rs. 4,500/m² area

Efficiency of the packed bed type SAH is 40% more as compared to sun drying

Solar Refrigerator for Rural Applications

Solar Refrigerator installed in a veterinary clinic near Anand

Solar Refrigerator installed at Veterinary laboratory of CSKHPKVV Palampur

ICAR

SPRERI SPV refrigerator 80 l capacity, top opening
200 Wp panel, 24 V, 130 Ah, Cost: Rs. 1,20,000/20 units are in use in Veterinary Centres
Manufacturer: M/s Mamta Industries, Ahmedabad

Electricity from Solar Energy for Rural Applications

Street lighting

Irrigation water pumping

PV module - 74 W_p CFL - 11 W Lead acid battery - 12 V, 75 AH

PV module – 200-3000 W_p Pump of matching capacity Cost: Rs. 150000/- (900 W_p)

Cost of SPV panel – Rs. 125 – 150/W, Cost of electricity – Rs. 15-20/kWh

Bio-diesel plant - 250 l/day, Yield - 75-90%

Biomass gasifier based power generation system

National Initiative on Climate Resilient Agriculture (NICRA)

- Network project of the ICAR launched in February, 2011 with CRIDA, Hyderabad as the lead centre.
- The project aims to enhance resilience of Indian agriculture to climate change and climate variability through strategic research and technology demonstration.
- Central Institute of Agricultural Engineering (CIAE), Bhopal is one of the core institute giving major thrust on Engineering interventions for conservation agriculture, precision farming and energy use efficiency.

Testing Network in India

- 1. CFMT&TI, Budni, M.P.
- 2. NRFMT&TI, Hisar, Haryana
- 3. SRFMT&TI, Garladinne, A.P.
- 4. NERFMT&TI, Biswanath Chariali, Assam

Other Institutions for Testing Agricultural Machinery in India (28)

SAUs	:	21
ICAR Institutes	:	2
IIT	:	1
State Govt. Institute	:	4

Policy Mandate

- Requirement for Farm Mechanization
 - Farm power requirement by 2020 2.5 kW/ha
 - Removal of regional disparities
- Infrastructural and Institutional Framework
 - Adequate engineering infrastructure at implementation level
 - Effective training and extension service
 - Repair and maintenance facilities
 - Machinery banks for custom hiring services
 - Credit at simple terms
- Appropriate Farm Machines and Equipment
 - For small and marginal land holdings
 - Crop specific quality machines
 - For hill agriculture
 - Gender specific

Policy Initiatives by the Government of India to Promote Farm Mechanization

Training

ICAR

- Demonstration
 - Large scale demonstration of equipment at farmers field
- Incentives for Purchase of Equipment

Subsidy through MMA, NFSM, NHM and similar other schemes available to all categories of farmers

- Incentives for establishment of Machinery Banks at block levels for custom hiring services
- Identification of Machines
 - Hill agriculture
 - Gender friendly tools and equipment
 - Crop specific package of machines

Policy Initiatives by the Government of India to Promote Farm Mechanization

- Manufacturing Sector
 - De-reservation of manufacturing of agricultural machines from small scale sector
 - Training on manufacturing technologies
- Quality of Machines
 - Minimum performance standards for tractors, power tillers and combine harvesters framed
 - Standard specifications for all machines
 - Equipment promotion through subsidy: Testing by FMTTI or BIS certification is mandatory

Credit

- NABARD refinance available and financing norms simplified
- Agro Processing Sector
 - Scheme on post harvest technology
 - Technologies developed by ICAR/CSIR promoted

National Mission on Farm Mechanization

- Increasing the reach of farm mechanization to small and marginal farmers and to the regions where availability of farm power is low
- Offsetting adverse 'economies of scale' and 'higher cost of ownership' of high value farm equipment by promoting 'Custom Hiring Centre' for agricultural machinery
- Passing the benefit of hi-tech, high value and hi-productive agricultural machinery to farmers through creating hubs for such farm equipment.
- Promoting farm mechanization by creating awareness among stakeholders through demonstration and capacity building activities
- Ensuring quality control of newly developed agricultural machinery and equipment through performance evaluation and certifying them at designated testing centers located all over the country.

Sub-mission on Agricultural Mechanization during 12th Five Year Plan

S. No.	Components
1	Promotion & strengthening of agricultural mechanisation through training, testing and demonstration
2	Post harvest technology and management
3	Financial assistance or procurement subsidy for selected agriculture machinery and equipment
4	Establishment of farm machinery banks for custom hiring by small and marginal farmers
5	Establishing hi-tech and high productive equipment hub for custom hiring
6	Enhancing farm productivity at village level by introducing appropriate farm mechanization in selected villages
7	Creating ownership of appropriate farm equipment among small and marginal farmers in the eastern/north eastern regions

Individual Ownership OR Custom Hiring

Key Question is How to cater marginal and small farmers who aggregate to > 80% of cultivators

Conclusions

- "Future farm mechanization through mechanical sources of power
- "R&D in farm mechanization through Public Private Partnership mode
- " Equipment/technology for increasing input use efficiency
- Machines suitable for custom hiring high capacity, high labour productivity
- Quality manufacturing and after sales support for reliability of farm machinery.

Conclusions

- Mechanization of horticulture and hill agriculture
- Mechanization of sugarcane harvesting and cotton picking
- Centralized nursery raising for horticultural crops and rice
- Covered cultivation
- Adoption of conservation agriculture and precision farming
- Consideration of ergonomics and safety in farm equipment/machinery design
- Contract farming
- "Farm machinery bank

E-mail: <u>crmehta@ciae.res.in</u> <u>http://www.ciae.nic.in</u>