

Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source

WANG Jing-Yuan Associate Professor, School of Civil & Environmental Engineering Director, Environmental Engineering Research Centre

23 - 25 January 2008

Technology	Conversion Process Type	Major Biomass Feedstock	Energy or Fuel Produced heat steam electricity	
Direct Combustion	thermochemical	wood agricultural waste municipal solid waste residential fuels		
Gasification	thermochemical	wood agricultural waste municipal solid waste	low or medium- Btu producer gas	
Pyrolysis	thermochemical	wood agricultural waste municipal solid waste	synthetic fuel oil (biocrude) charcoal	
Anaerobic Digestion	Biochemical (anaerobic)	animal manure Agriculture waste	Medium Btu gas (methane)	
Ethanol Production	biochemical (aerobic)	sugar or starch crops wood waste pulp sludge grass straw	ethanol	
Biodiesel Production	chemical	rapeseed soy beans waste vegetable oil animal fats	biodiesel	
UNIVERSITY	thermochemical	wood agricultural waste municipal solid waste	methanol	

Output	Feedstock	Preparation	Key transformation	Refining	Distribution / Usage	Co-products
Transportation	n	I			1	1
Ethanol (starch)	Designer crop	De-watering	Continuous flow Microbials	Mostly resolved	Sediment	Market for DDG
Ethanol (cellulose)	Beyond clean straws to waste cellulose	Acid and enzyme Pre-treatment De-watering	Right-sizing / business model	Mostly resolved	Sediment	What to do with C5 sugars
Biodiesel	Beyond food crops Blue-green algae?	Purity/consistency of non-virgin oils De-watering	Higher efficiency catalyst Containment of catalyst	Product consistency Standards	Water contamination	Glycerine quality / markets
Heat and Elec	tricity	I	1		1	1
Biogas (Anaerobic Digestion)	Beyond manure SRM Recipies	Particle size De-watering	Well understood Microbial efficiency and nutrition	Gas clean-up Gas compression	Generator efficiency and robustness	Markets for spent digestate
Syn Gas (Gasification)	Beyond homogeneous feedstock	Sorting technology Moisture removal De-watering	Heat transfer Material handling	Gas clean-up Gas compression	Generator efficiency and robustness	Market development for CO2
Pio Oil yl (MA) TECHNO	Beyond Antimigeneous	Particle size De-watering	Mostly worked through	Chemical characterization and extraction	Generator efficiency and robustness	Use of fuel as the co- product

