Improve Water Productivity and Climatic Resilience for Agriculture: Chinese Lessons and Outlook

Mei Xurong, Principal Scientist of Dryland Agriculture
Director, State Engineering Laboratory for Efficient Water Use and Disaster Reduction of Crops
Director, MOA Key Laboratory of Agricultural Environment
Director, Department of Research Management, CAAS
meixurong@caas.cn
Climate, water and food in China

% of the world

Vegetable & fruits 38%
Animal protein 30%
Cereal + legume + tube 21%
Population 20%
Chemical fertilizer 34%
Arable land 9%
Renewable water... 6%

Arable Land Irrigation Ratio (%)

Cereal Production (MMT) Water Consumption (BCM) Water Productivity (CM/MT)

China 52 World Average 20 USA 15 Russia 10

AgWater Panorama, BCM

Rain 6188 100% Blue 2810 45%
Green 3378 55% Rainfed
?? 750 410 Irrigation
620 370 180

National Agriculture Actual

2017/9/22
In recent 15 yrs, drought tend to severe Northeast-Southwestward
By 2030, plant production may reduce 5%-10%, cereal crops are mainly loss yield due to high temperature, frequent drought and flood, and water scarcity.
Climate, water and food in China

Annual Variation of GGP in China (1949~2010)

Caused by extreme climatic events in 2009

- grain losses reached **55** million tones
- **10%** of total grain production

Drought

Flooding

Hail
Improve water productivity and resilience

\[WP = \frac{\text{Crop Yield (kg)}}{\text{Water Consumption (m}^3\text{)}} \]

\[= \frac{\text{Biomass} \times \text{Harvest Index}}{\text{Evaporation} + \text{Transpiration}} \]

- Increase water availability
- Reduce non-productive water use
- Improve crop yield under water limitation
Soil moisture content (V/V, %)

- Increase water availability – water harvesting

- Ridged water harvesting (RWH, Tr1)
- RWH + plastic mulching (Tr2)
- RWH + straw mulching (Tr3)

Improve water productivity and resilience

- Increase water availability – water harvesting

Soil moisture content (V/V, %)

Date (month/day)

2017/9/22
Improve water productivity and resilience

- Increase water availability – water harvesting & irrigation

Cistern water harvesting combine with gravity drip irrigation system becomes a good solution small-scaled greenhouse
Improve water productivity and resilience

- Increase water availability – irrigation

<table>
<thead>
<tr>
<th>Irrigation methods</th>
<th>Water Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface, Flood</td>
<td>40%~60%</td>
</tr>
<tr>
<td>Furrow</td>
<td>50%~70%</td>
</tr>
<tr>
<td>Sprinkler</td>
<td>70%~80%</td>
</tr>
<tr>
<td>Trickle, drip</td>
<td>90%~95%</td>
</tr>
</tbody>
</table>
Improve water productivity and resilience

- Reduce non-productive water use – minimize soil evaporation

Partitioning Es from ET by using isotope techniques to maximize the plant Transpiration

Alternative furrow irrigation -20%~30% irrigation water

Full plastic film mulching -90% Es & WP 4.2 kg/m³ (240m³/t)

Straw mulching -50% Es and -200 m³/t
Improve water productivity and resilience

- Improve WUE/ WP – genetic explore and W-F integration

![Drought tolerant wheat](image1)

![High productive maize](image2)

![Intercropping](image3)

Nitrogen Use Efficiency %

- Straw out
- Straw in

\[Y(\text{straw-out}) = 53.364e^{-0.0977x} \]
\[R^2 = 0.9944 \]

\[Y(\text{straw-in}) = 71.745e^{-0.0666x} \]
\[R^2 = 0.9971 \]

Number of year

Yield (kg/ha) & ET (mm)

NUE of dryland maize (\text{^{15}N}, 1997\text{~}1999)

Yield, Fertilization and ET
Improve water productivity and resilience

- Improve WUE/WP – Fertigation
Improve water productivity and resilience

- Enhance climatic resilience - Optimize cropping system and biodiversity

 WUR 60% ↑ 70%, WUE 0.60 ↑ 1.20

- Potato ⌄ canola
- Alfalfa ⌄ foliar maize
- Grazing
- Contour planting
- Stubble mulching
- Hedgerow
Climate Smart Agriculture Approach

- **Climate Smart Agriculture (FAO)**

 It integrates the three dimensions of sustainable development (economic, social and environmental) by jointly addressing food security and climate challenges. It is composed of three main pillars:

 - sustainably increasing agricultural **productivity and incomes**;
 - adapting and building **resilience** to climate change;
 - reducing and/or removing **GHGs** emissions, where possible.

- **Ecological Intensification (CGIAR, 2011)**

 Meet food demand under acceptable environmental standards

 - Increase **Productivity** and **Sustainability**

 Light capture
 N use efficiency
 Water use efficiency
 Land use efficiency
 Biological control
 Ecosystem resilience
 Ecological engineering
 Reduce GHGs emissions
 Maintain agro-biodiversity
Climate Smart Agriculture Approach

- Improve *crop productivity for* food supply
 - Genetic exploring and climate change ready varieties
 - Enhance soil organic carbon and fertility
 - Irrigation technical Integration and intensification
- Enhance *biodiversity & climatic resilience* for ecosystem healthy
 - Multi- and/or Inter-cropping system to improve profit and reduce environmental and natural disaster risks
 - Crop-based livestock (dry subhumid)
 - Grassland-based livestock (arid and semiarid)
- Develop *horticulture/food processing* for poverty reduction & livelihood
- Intensify *Carbon management* for C sequestration & GHGs reduction
 - Soil water reservoir enrichment
 - Biological fertility enrichment and chemical fertilizer (NPS) reduction
 - GHGs emission Reduction
Climate Smart Agriculture Approach
CDCC: Common Duties for Common Challenge!!

Thank You!