Cooperation Mechanism for HRD on Sustainable Agricultural Mechanization

Dr. Krishna Kumar Singh
Director
ICAR-CENTRAL INSTITUTE OF AGRICULTURAL ENGINEERING, BHOPAL
Vision

To modernize Indian agriculture by improvement in crop productivity through agricultural mechanization, harnessing energy from renewable sources, efficient management of irrigation water, reduction in post-harvest losses and promote agri-business with a view to enhance income and generate employment in rural sector.

Mandate

• Research on agricultural mechanization, post-harvest food processing, and energy management in agriculture
• Human Resource Development and capacity building through outreach and training programs; commercialization and utilization of agricultural engineering technologies
ICAR-CIAE INFRASTRUCTURE

- Director’s Office
- Administrative Sections
- Library
- Technology Transfer Division

- Agricultural Mechanization Division
- Research Workshop
- AICRP on FIM
- AICRP on UAE
ICAR-CIAE INFRASTRUCTURE

- Agro Produce Processing Division
- Agricultural Energy & Power Division
- Irrigation & Drainage Engineering Division
- AICRP on EAAI
- AICRP on ESA

Centre of Excellence in Soybean Processing & Utilization
ICAR-CIAE INFRASTRUCTURE

CIAE Guest House
(44)

International Training Centre
(18)
ICAR-CIAE, Bhopal

Major Issues

- Dwindling availability of labourers for agricultural operations
- Reducing cost of cultivation and increasing productivity
- Doubling farmers’ income
- Mechanization of small farms
- Reduction in drudgery, enhancing safety
- Food and Nutritional Security
- Energy and Water security
- Mitigation of climate change
- Knowledge building and skill enhancement
Engineering Interventions for

Increasing -
• Production and Productivity
• Comfort and Safety
• Return and Profitability to Farmer

Reducing -
• Cost of Cultivation
• Drudgery

Through
• Enhanced Input use Efficiency
• Timeliness of Operation
ICAR-CIAE, Bhopal

Technology Development Process of CIAE

1. Interaction with farmers through ORP, FLD, Kisan Melas etc.
2. Interaction with machinery manufacturers/processors
3. Inputs of Regional Committees, DoAC-ICAR interface
4. Interaction with developmental agencies, KVK, NGOs
5. Commodity based and other ICAR Institutes/universities

- Identification of Problems
- Design / development or adaptation of hardware/process/technology
- Field evaluation / testing
- Pilot introduction through ORP, on-farm trials, FLD, KVKs
- Technology & information dissemination through Trainings, Manufacturers’ days, exhibitions, kisan melas, MoA/ MoU, Mera Gaon Mera Gaurav
 - Farmers, fabricators, processors
 - Entrepreneurs
 - Personnel of developmental agencies

Users of developed hardware/Process/technology
ICAR-CIAE, Bhopal

Thrust Areas

• Small Farm Mechanization
• Conservation Agriculture and Climate Resilient Technologies
• Hill Agriculture
• Horticulture Mechanization
• Precision Agriculture
• Developing value chains for food grains
• Food quality and safety
• Energy management in agriculture for enhanced efficiency;
• Technology for second and third generation biofuels;
• Mechanized on-farm water management practices to produce more crop per drop;
• Technology management and capacity building for stakeholders.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 1 | Planters for millets/small seeds | • Field capacity of machine is 0.4-0.5 ha/h
• Use of these planters can save upto 90% seeds as compared to broadcasting and 70% seeds as compared to drilling by traditional methods in case of millets. |
| 2 | Package of machinery for sugarcane bud chip technology | Reduce the seed cane requirement by about 90% in comparison to conventional method |
| 3 | Seed-cum-fertilizer drill for two stage placement of fertilizer | • Field capacity of the machine is 0.5 ha/h at forward speed of 3.5 km/h with the cost of operation of Rs 600/h.
• An estimated saving of 5-7% in phosphorus and potash fertilizers can be achieved.
• a farmer can get additional income of Rs. 8000/- per ha in wheat and Rs. 7000/- per ha in soybean crop |
ICAR-CIAE
(Some recent technological developments)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 4 | Pre-emergence herbicide strip applicator-cum-planter | • Helps in reduced use of herbicide by applying the chemical at the time of sowing
• Field capacity of the developed system is 0.4 ha/h with an operating cost Rs 1,350/- per ha saving 40-50% herbicide. |
| 5 | Bullock drawn garlic planter | • It is used to carry out sowing at depth of 25-40 mm.
• The seed damage was found between 2-4% in all case.
• The operational cost is calculated Rs 725/- per hectare. |
| 6 | Spectral reflectance based variable rate top dress urea application system | • For top dressing of urea in rice and wheat crops, integrated with spectral reflectance based sensor (Green seeker)
• can be mounted on back of operator (weight 5.5 kg without urea) and covers swath width of 4 m.
• An estimated 8-15% savings in urea fertilizer can be achieved with use of NDVI based variable rate fertilizer applicator in wheat and rice crops in areas with spatial nitrogen variation. |
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Colour sensor based herbicide applicator</td>
<td>• Developed to spray herbicide on site-specific weeds in between rows. Laser sensor acts as “eye” to the equipment, which sprays liquid only on the weed patches
• This system is an automatic on-off type unit enabling chemical application on the area where weeds exist.
• It can save herbicide to the tune of 40-60% depending upon level of weed infestation</td>
</tr>
<tr>
<td>8</td>
<td>Multi-millet thresher</td>
<td>• Suitable for cleaning and grading of millets seeds
• Threshing capacity of the equipment is 80-150 kg/h
• About one million farmers of India, especially in the tribal areas are likely to get benefit of the equipment by saving about 30 man-h/ha of operation time</td>
</tr>
<tr>
<td>9</td>
<td>Rotary assisted broad bed former-cum-seeder</td>
<td>• Developed for seeding of soybean and wheat crops on raised beds.
• The field capacity of this machine for making fresh bed and sowing is 0.35 ha/h and for reshaping of bed and sowing is 0.56 ha/h.</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Technology</td>
<td>Salient Features</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| 10 | Arecanut Sheath Shredder | • Compact and energy efficient.
• The capacity of the machine was found to be 130 kg/h. |
| 11 | Low cost SPAD meter | • Developed using principal of spectrophotometer
• It can be used in estimating SPAD values for N dose recommendation |
| 12 | Tractor operated cassava planter | • Field capacity of the planter is 0.18 ha h⁻¹
• Cost of operation of cassava planter is Rs. 3125/ha and it saves 60.40% in cost when compared to manual planting. |
| 13 | Tractor front mounted hydraulically operated 3-row sorghum harvester | • Field capacity and field efficiency of the machine was observed in the range of 0.20 -0.23 ha/h and 80-83%.
• Operating cost : Rs. 2500/ha |
ICAR-CIAE
(Some recent technological developments)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 14 | Millet Mill | • Developed for dehusking minor millets viz., foxtail millet, little millet, kodo millet, proso millet and barnyard millet
• Capacity of dehusking : 100 kg/h (at 95% efficiency) |
| 15 | Pneumatic Conveyor-cum dryer, Flaking machine & belt conveyor assembly | • Produces flakes from pre-treated whole sorghum grains
• Process was also developed for preparation of sorghum flakes by fermenting the grains with suitable cultures, steaming and then mechanically pressing into flakes |
<p>| 16 | Processing of Garcinia combogia Juice | Package of equipment (capacity 40-45 kg/h) consists of juicer/grinder, juice squeezer and juice concentration |</p>
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 17 | **Machine vision based on-line non-destructive quality assessment** | • A set up for on-line non-destructive quality assessment using X-ray imaging of mango has been developed.
• It is expected that with advent of more economic hardware and more concern for food safety, field deployable units could be made available. |
| 18 | **Innovative products for high nutrition** | • **Soy-butter** (high protein content of 39 %)
• **Probiotic soy cheese spread** (made from soy milk with addition of soybean oil, dry okara powder, sugar, and specific probiotic starter cultures)
• **Nutribar** (rich in protein (10g/40g), iron (6mg/40g) and anti-oxidants)
• Multi-nutrient biscuits [protein content of the biscuits was 23% with high fibre (2%)] |

ICAR-CIAE

(Some recent technological developments)
ICAR-CIAE

Some recent technological developments

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 19 | **Biomass based decentralized electricity generation plant** | • Plant generates the electrical energy of 1 kWh from 1.2-1.5 kg of crop residues with estimated cost of Rs. 7 per kWh
 • Two units of 100 kVA installed at 2 villages of Madhya Pradesh (India)
 • Technology was found suitable for electricity generation and its use for operation of agro-industries (water pumping system and dal mill) at decentralized mode in the areas where the biomass burning is being practiced |
| 20 | **Biochar production technology** | • Calorific value of charred pigeon pea stalk was found to be 24.8 MJ/kg and was 26.8 percent
 • Vapour produced during the production of bio char was composed of 5.63 % carbon monoxide, 10.35% carbon dioxide, 20% methane, 17.5% hydrogen |
ICAR-CIAE
(Some recent technological developments)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
| 21 | **Solar powered knapsack sprayer (3 nozzle)** | • Developed for spraying in field and vegetable crops
• Field capacity is 0.3 ha/h as compared to conventional knapsack sprayer 0.11 ha/h |
| 22 | **Solar assisted dehumidifier based heat pump dryer** | • Developed for drying of high valued crops
• Thermal efficiency of the heat pump dryer was 24-30% as compared to 15-22% of conventional electrical dryer |
ICAR-CIAE

(Some recent technological developments)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Technology</th>
<th>Salient Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Drip irrigation approaches</td>
<td>• Using drip irrigation along with plastic mulch yield of rice could be increased by 33 per cent in rice and 23 per cent in wheat over conventional system of cultivation</td>
</tr>
</tbody>
</table>
ICAR-CIAE, Bhopal

International Training Programmes Offered by CIAE
(Experienced scientific and technical expertise is available)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training on</th>
<th>Duration</th>
<th>For</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Production Technology of Agricultural Equipment for quality up-gradation and standardization</td>
<td>3-Weeks</td>
<td>Designers, researchers and manufacturers of agricultural machinery</td>
<td>For quality product manufacturing through modern manufacturing technology</td>
</tr>
<tr>
<td>2</td>
<td>Computer Aided Design (CAD) of Agricultural Machinery</td>
<td>2-weeks</td>
<td>Research scientists, design engineers and faculty members involved in the field of agricultural machinery</td>
<td>Extensive knowledge of CAD techniques and intensive hands on working in use of CAD software.</td>
</tr>
<tr>
<td>3</td>
<td>Testing and Evaluation of Agricultural Machinery</td>
<td>3-Weeks</td>
<td>Agricultural Engineers, Research Engineers, University Teachers, Entrepreneurs</td>
<td>Persons engaged in selection of test procedures and instrumentation, field evaluation of equipment and adoption of the test standards that address the needs of national conditions</td>
</tr>
</tbody>
</table>
ICAR-CIAE, Bhopal

International Training Programmes Offered by CIAE

(Experienced scientific and technical expertise is available)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training on</th>
<th>Duration</th>
<th>For</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Resource Conservation Technologies for Sustainable Agricultural Production</td>
<td>2 Weeks</td>
<td>Researchers, Teachers and Entrepreneurs related with Agricultural mechanization</td>
<td>To address mechanization needs for promotion and adoption of conservation agriculture and climate change mitigation</td>
</tr>
<tr>
<td>5</td>
<td>Design Methodology of Ergonomically Sound Agricultural Machinery</td>
<td>6 Weeks</td>
<td>Researchers, teachers and manufacturers related with Agricultural mechanization</td>
<td>For appropriate design of agricultural machinery.</td>
</tr>
<tr>
<td>6</td>
<td>Machine vision applications in agriculture and food</td>
<td>2 Weeks</td>
<td>Agricultural Engineers, Research Engineers, University Teachers, Entrepreneurs</td>
<td>Engineers working for mechanization of agriculture</td>
</tr>
</tbody>
</table>
ICAR-CIAE, Bhopal

International Training Programmes Offered by CIAE
(Experienced scientific and technical expertise is available)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training on</th>
<th>Duration</th>
<th>For</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Equipment and technology for processing and value addition to agro produce at small scale / rural level</td>
<td>2 Weeks</td>
<td>Agricultural Engineers, Extension Officers, Food Professionals, Process Engineers, Research Engineers, University Teachers, Upcoming Entrepreneurs</td>
<td>To gain knowledge and understand about establishing and operating value addition centres</td>
</tr>
<tr>
<td>8</td>
<td>Soybean processing for food uses</td>
<td>2 Weeks</td>
<td>Agricultural Engineers, Extension Officers, Process Engineers, Food Professionals, Research Engineers, University Teachers, and Upcoming Entrepreneurs</td>
<td>To train and establish entrepreneurs on soy processing for self employment opportunity in developing world to facilitate availability of nutritious food to population</td>
</tr>
</tbody>
</table>
International Training Programmes Offered by CIAE

(Experienced scientific and technical expertise is available)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training on</th>
<th>Duration</th>
<th>For</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Nutritional security though plant & dairy ingredients based function foods</td>
<td>2 weeks</td>
<td>Agriculture and food entrepreneurs, Research fellows, Scientists, University teachers, government officials dealing with agriculture</td>
<td>For improving food and nutritional security</td>
</tr>
<tr>
<td>10</td>
<td>Renewable Energy Technology for Production & Post Production Agriculture and Rural Entrepreneurship</td>
<td>2 weeks</td>
<td>Agricultural Engineers, Extension Officers, Research Engineers, University Teachers, Entrepreneurs</td>
<td>Utilization of renewable energy technologies in the production and post-production agriculture</td>
</tr>
</tbody>
</table>
International Training Programmes Offered by CIAE

(Experienced scientific and technical expertise is available)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training on</th>
<th>Duration</th>
<th>For</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Recent advances in irrigation and drainage systems for precision agriculture and sustainable production in semi-arid conditions</td>
<td>2 weeks</td>
<td>Irrigation and Drainage Engineers, Extension Officers, Research Engineers, University Teachers/ faculties</td>
<td>Water management and use of other inputs more efficiently and precisely for sustainable farm productivity</td>
</tr>
<tr>
<td>12</td>
<td>Technopreneurship of Engineering Technologies for Agribusiness</td>
<td>3 weeks</td>
<td>Engineers, Agricultural Research Engineers, Entrepreneurs</td>
<td></td>
</tr>
</tbody>
</table>
ICAR-CIAE, Bhopal

International Training Courses Organized by CIAE in the recent past

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Training</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advances in Agricultural Equipment for Productivity Enhancement including Precision Farming” for Association of South East Asian Nations (ASEAN)</td>
<td>23 April to 5 May, 2012</td>
</tr>
<tr>
<td>2</td>
<td>AARDO training on “Equipment and Technology for Processing and Value-addition to Agricultural Products at Small Scale/ Rural Level</td>
<td>14-27 December, 2012 10-24 February, 2014</td>
</tr>
<tr>
<td>3</td>
<td>Training-cum-Study Tour on Farm Mechanization for the African Stakeholders</td>
<td>29 April to 4 May, 2013</td>
</tr>
<tr>
<td>4</td>
<td>Certificate Course in Food Science and Technology for 2 participants from Federal Republic of Nigeria</td>
<td>June to November, 2015</td>
</tr>
</tbody>
</table>
ICAR-CIAE, Bhopal

Priority Areas for Cooperation

Research & Development

- Small Farm Mechanization
- Conservation Agriculture
- Horticulture Mechanization
- Precision Agriculture
- Drudgery Reduction in Agriculture
- Women Friendly Machinery
- Post Harvest Technology and Food Processing
- Second and Third Generation Bio-Fuels
- Micro-irrigation Systems
ICAR-CIAE, Bhopal

Priority Areas for Cooperation

Human Resource Development & Capacity Building

- Computer Aided Design (CAD) of Agricultural Machinery
- Design Methodology for Ergonomically Safe Machinery
- Manufacturing Technology for Quality Upgradation
- Testing of Agricultural Machinery
- Machinery for Small Farm Mechanization
- Machinery for Enhancing Input Use Efficiency
- Establishment of Custom Hiring Centre
- Resource Conservation Technologies
- Entrepreneurship Development Programmes in Farm Mechanization and Food Processing
Opportunities that CIAE can contribute

- Offering Services of Technical Experts
- Joint Funding Proposal
- Arranging Study Tours
- Exchange of Scholars/Students
- Hosting Internship or Visiting Research Positions
- Organizing Training and Capacity Building Programmes
- Skill Development Programmes
- Technical Assistance in Establishment of Custom Hiring Centres
- Organizing Seminars, Conferences and Workshops
If We Forget How to Till the Soil and Tender the Earth we will Forget Ourselves

MAHATMA GANDHI

Thank You

E-mail: KK.Singh@icar.gov.in; singh_ciae@yahoo.com
Website: http://www.ciae.nic.in