Leading the Way for Climate-Smart Agriculture through Machinery and Practices in Indonesia

Presentation by

Astu Unadi
Senior Researcher
Indonesian Center for Agricultural Engineering Research and Development
IAARD, Ministry of Agriculture
Area: 5,193,250 km²
- Land: 1,919,440 km²
- Water: 3,273,810 km²

Island: 17,508

Population: 253,000,000

Agricultural land: 70.2 million ha
- Wetland paddy: 8.11 million ha
- Dry Land: 11.87 million ha
- Plantation: 18.5 million ha
- Meadow/pastures: 2.4 million ha
- Yard: 5.4 million ha
- Ponds: 0.8 million ha
- Timber Plants: 9.3 million ha
- Sub optimal lands: 11.3 million ha
MAJOR AGRICULTURAL PRODUCTS (2014)

- The rainy season: October to April
- The dry season: April to October
- Land holding: 0.3 - 0.5 ha/farmer

<table>
<thead>
<tr>
<th>No.</th>
<th>Commodity</th>
<th>Harvested Area (ha)</th>
<th>Productivity (Ton/ha)</th>
<th>Production (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paddy</td>
<td>13.569.941</td>
<td>5.15</td>
<td>69.870.950</td>
</tr>
<tr>
<td>2</td>
<td>Corn</td>
<td>3.786.376</td>
<td>4.89</td>
<td>18.548.872</td>
</tr>
<tr>
<td>3</td>
<td>Soybean</td>
<td>601.237</td>
<td>1.48</td>
<td>892.602</td>
</tr>
<tr>
<td>4</td>
<td>Ground nut</td>
<td>501.142</td>
<td>1.32</td>
<td>664.003</td>
</tr>
<tr>
<td>5</td>
<td>Green beans</td>
<td>180.055</td>
<td>1.17</td>
<td>210.819</td>
</tr>
<tr>
<td>6</td>
<td>Cassava</td>
<td>1.149.208</td>
<td>22.99</td>
<td>26.421.770</td>
</tr>
<tr>
<td>7</td>
<td>Sweet potato</td>
<td>156.862</td>
<td>15.07</td>
<td>2.363.568</td>
</tr>
</tbody>
</table>
NUMBER OF AGRICULTURAL MACHINERY IN INDONESIA

<table>
<thead>
<tr>
<th>NO</th>
<th>AGRICULTURAL MACHINERY</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 Wheel tractor</td>
<td>216 174</td>
</tr>
<tr>
<td>2</td>
<td>4 Wheel tractor</td>
<td>3 887</td>
</tr>
<tr>
<td>3</td>
<td>Irrigation pump</td>
<td>148 275</td>
</tr>
<tr>
<td>4</td>
<td>Rice transplanter</td>
<td>5 617</td>
</tr>
<tr>
<td>5</td>
<td>Combine harvester</td>
<td>1 090</td>
</tr>
<tr>
<td>6</td>
<td>Thresher</td>
<td>70 678</td>
</tr>
<tr>
<td>7</td>
<td>Grain dryer</td>
<td>2 323</td>
</tr>
</tbody>
</table>

Source: Sudaryanto, 2016
TARGET OF INDONESIA AGRICULTURE DEVELOPMENT

- Sustainable Food Sufficiency & Security
- Increasing Food Diversification
- Increase added value, competitiveness and export
- Increasing farmer welfare
PROBLEMS IN ACHIEVING SUSTAINABLE FOOD SELF SUFFICIENCY

LAND
- High land conversion rate (+/-60 000ha/year)
- Small land holding (0.3 ha/farmer)

INFRASTRUCTURE
- Poor maintenance of irrigation & drainage facilities (48% was not function properly)
- High cost of food production

AGRICULTURE
- Seed and fertilizer production and distribution system does not work properly
- Limited number and low utilization of Farm machinery

INPUT
- Flood, drought, pest & disease explosion

CLIMATE CHANGE & ENVIRONMENT
- Lack of agricultural labor (5 mill agricl’ labor shifted to non agricultural job within 10 year) → high labor cost, low crop index
- High losses, Low product quality

COMPETITIVENES

The 4th Regional Forum on Sustainable Agricultural Mechanization in Asia and the Pacific
1. Decreasing capacity of water in some large reservoirs: (5.7 → 4.9 mill m3/year), Citarum, Gajah Mungkur & Kedung Ombo

2. Delay planting season → decreases rice production in West Java and Central Java 6.5%, Bali 11%

3. Decreases planting area & Increased land area prone to drought (0.03 to 3.1%) / flood (1.4 to 7.8%) & inundated area (0.8 → 13.8%)

4. Disorderly/failure of flowering system → Reduce production of fruit & estate crop: 5-8% → more than 20%

5. In 2015 delay of rainy season by more than 1 month and in 2016 rainy season start 2 month earlier → flood
PROGRAM PRIORITY OF MOA TO ACHIEVE SUSTAINABLE RICE SELF SUFFICIENCY

IRRIGATION
- Improvement of tertiary cannal
- Maintenance of main Irrigation cannal

SEED
- Supply of seed to the farmer on time
- Support seed industry

AGRICL’ MACHINERY
- Farm machinery grand to overcome lack of labor, increasing cropping index and reducing post harvest losses, reducing labor cost
- Optimization of existing farm machinery.

EXTENSION
- Farmer group
- Custom hiring
- Water user association

FERTILIZER
- Supply of fertilizer to the farmer on time
- Improvement of distribution system
- Utilization organik fertilizer

SUSTAINABLE FOOD SELF SUFFICIENCY
• R&D to develop New superior variety of crops and cattle, Pest & disease control;

• R&D to develop Agricultural machinery specific location, Land, water and fertilizer management, Improve crops management through “JAJAR LEGOWO SYSTEM”, Post harvest handling and processing

• Agricultural planning and management based on IT
 • Crop calendar
 • Dynamic standing crops map
 • Expert system for pest and disease control
 • Expert system for farm machinery distribution
“JAJAR LEGOWO”
TRANSPLANTER
FOR PADDY

The 4th Regional Forum on Sustainable Agricultural Mechanization in Asia and the Pacific
The 4th Regional Forum on Sustainable Agricultural Mechanization in Asia and the Pacific

BEST PRACTICES OF DEVELOPMENT AND UTILIZATION OF AGRICULTURAL MACHNERY

- **JAJAR LEGOWO TRANSPLANTER**
 - Designed and developed in 2013 - 2014

- 1000 unit was produced and marketed in 2015
- 2000 unit was produced and marketed in 2016

Using combination of “Jajar Legowo Super technique and Transplanter, Rice productivity has increase from 6 ton/ha to 9.5 ton/ha of dried paddy in Central Jawa (2016)
SEEDLING PREPARATION FOR JAJAR LEGOWO SYSTEM

• Using seedling trays
• Amount of seed 30% higher than existing system
Paddy seedling practices for Jajar Legowo
Transplanter at corporate farming in Sukoharjo-
Central Jawa
Paddy seedling practices for Jajar Legowo Transplanter in East Kotawaringin, Central Kalimantan
TRANSPLANTER AND JAJAR LEGOWO TECHNIQUE

- Increase the number of crops by 30%
- Increase Rice Yield 20-30%
- Machine capacity: 6 - 7 h/ha
- 7 Indonesian Agricultural Machinery Industries has produced and marketed Transplanter Jajar Legowo
MINI COMBINE HARVESTER

- Reduced harvesting cost 30%
- Grain losses 1.87%
- Capacity 7 - 9 h/ha
- 5 Indonesian agricultural machinery industries has produced and marketing mini combine harvester
MEDIUM ZSIZE COMBINE HARVESTER

- Reduced harvesting cost 30%
- Grain losses < 2%
- Capacity 4-6 h/ha
- 4 Indonesian agricultural machinery industries has produced and marketing mini combine harvester
R&D ON AGRICULTURAL MACHNERY FOR MAIZE

- MAIZE AND PADDY COMBINE HARVESTER
- RUBBER TRACK SHOE ROTAVATOR CUM DECOMPOSER
To Increase Cropping Intensity, Reduce Losses and Cost, in 2015 MOA of Indonesia Has Granted Number of Agricultural Machinery to the Farmer Group

<table>
<thead>
<tr>
<th>NO</th>
<th>Agricultural Machinery</th>
<th>Number</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 Wheel Tractor</td>
<td>26 100</td>
<td>Unit</td>
</tr>
<tr>
<td>2</td>
<td>4 Wheel Tractor</td>
<td>1 000</td>
<td>Unit</td>
</tr>
<tr>
<td>3</td>
<td>Irrigation Pump</td>
<td>8 178</td>
<td>Unit</td>
</tr>
<tr>
<td>4</td>
<td>Rice Transplanter</td>
<td>5 000</td>
<td>Unit</td>
</tr>
<tr>
<td>5</td>
<td>Chopper</td>
<td>697</td>
<td>Unit</td>
</tr>
</tbody>
</table>
THE USE OF AGRICULTURAL MACHINERY HAS SPEED UP FIELD ACTIVITY IN MANY PROVINCES IN INDONESIA

<table>
<thead>
<tr>
<th>Field activity</th>
<th>Manual (man days)</th>
<th>Full Mechanized (day)</th>
<th>Time Reduction (man days)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land preparation</td>
<td>20</td>
<td>3</td>
<td>-17</td>
<td>-85,0</td>
</tr>
<tr>
<td>Seedling and planting</td>
<td>19</td>
<td>7,5</td>
<td>-11,5</td>
<td>-60,5</td>
</tr>
<tr>
<td>Weeding</td>
<td>15</td>
<td>2</td>
<td>-13</td>
<td>-86,7</td>
</tr>
<tr>
<td>Harvesting</td>
<td>40</td>
<td>7,5</td>
<td>-32,5</td>
<td>-81,3</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>20</td>
<td>-74</td>
<td>-78,4</td>
</tr>
</tbody>
</table>
The Use of Agricultural Machinery Has Reduce Labor Cost

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manual (Rp/ha)</th>
<th>Full Mecanized (Rp/ha)</th>
<th>Cost reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rp</td>
</tr>
<tr>
<td>• Land preparation</td>
<td>1.600.000</td>
<td>1.200.000</td>
<td>-400.000</td>
</tr>
<tr>
<td>• Seedling and planting</td>
<td>1.720.000</td>
<td>1.100.000</td>
<td>-620.000</td>
</tr>
<tr>
<td>• Weeding</td>
<td>1.200.000</td>
<td>510.000</td>
<td>-690.000</td>
</tr>
<tr>
<td>• Harvesting</td>
<td>2.857.125</td>
<td>2.285.700</td>
<td>-571.425</td>
</tr>
<tr>
<td>Total</td>
<td>7.377.125</td>
<td>5.095.700</td>
<td>-2.281.425</td>
</tr>
</tbody>
</table>
MILLING RECOVERY OF SMALL RMP

Milling Recovery
56% - 61%
&
Broken 25% - 30%

Milling Recovery
66% - 67%
&
Broken 15% - 20%

Husk

Milled Rice

Brown Rice

The 4th Regional Forum on Sustainable Agricultural Mechanization in Asia and the Pacific
Thank you.

Dr Astu Unadi
Email Address: unadiastu@yahoo.com
Website: www.bbpmektan.litbang.pertanian.go.id