Mechanization, Testing and Certification at IRRI

CBalingbing, JQuilty, NVHung, MGummert
IRRI

2nd Meeting of ANTAM Technical Working Groups
10-13 May 2015, Bangkok, Thailand
Contents

I. Mechanization backgrounder
II. Testing and certification rationale
III. Losses in postharvest value chain
IV. IRRI’s work on Testing and Certification
 A. Land preparation
 B. Crop establishment/crop care
 C. Postharvest (e.g, drying, storage) and rice straw management
 D. Training
IV. Summary
Background

Mechanization

- process or system of introducing equipment and/or machines to do work that entails *technology*, *delivery*, and from *seed to market* value chain
- needs *support services* and supportive *government policy* to be sustainable.
- **IRRI mechanization program is over 45 years old**
 - began in 1970 with small-scale machines
 - Some mechanization highlights
 - Axial flow thresher
 - Hand tractor
 - Drum seeders
 - Laser leveling
 - Hydrotiller
 - Pumps
 - Combine harvesters
 - Dryers
 - Solar bubble drier
Background on IRRI mechanization

- **1990s-2000** – increased work on technology verification via NARES while continuing mechanization R&D
 - e.g. **laser assisted land leveling** and **hermetic storage**
- **In 2000-2010** – new approaches for out-scaling
 - **Participatory Impact Pathway Analysis (PIPA)**, development of **business models** (BM) and the Postharvest Learning Alliances (LA)
- **Current R&D includes:**
 - Solar bubble dryer, **rice straw management**, **impact pathways**, LA, crop establishment methods and new **public-private engagement** or **PPE model**
Background: Different Types of Testing

<table>
<thead>
<tr>
<th>Type</th>
<th>Scenario</th>
<th>Purpose</th>
<th>Test Protocol</th>
<th>IRRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype or component testing</td>
<td>• Development or improvement of a machine.</td>
<td>• Performance, durability, compliance with regulatory framework.</td>
<td>Highly specific to objective</td>
<td>With each new technologies (e.g. SBD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Optimization of the machine or component.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive field testing</td>
<td>• Testing on research farm or in farmers field.</td>
<td>• Testing under different cropping systems and field conditions.</td>
<td>According to objective</td>
<td>Most of IRRI’s testing activities (e.g. laser leveling)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adapting technologies to local conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational testing</td>
<td>• Usually done in the field under real world conditions</td>
<td>• Determine machine performance and effect on crop, other factors,</td>
<td>More or less standardized, but flexible</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Generate data for national certification of a new technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification testing</td>
<td>• Usually in lab on test rigs, some components in standardized fields. Checking of the data against specifications.</td>
<td>• Ensuring that machines comply with the regulatory framework.</td>
<td>Standardized, part of the certification</td>
<td>Provide advise / support to national testing centers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quantify performance data for end users.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusion of machines in public sector programs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Background: Types of Certification

• Certification of machinery
 – Regulatory framework
 – Performance
 – For inclusion in public sector promotion
 (danger of exclusivity, misuse to benefit some companies, promoting of equipment that farmers don’t want/need)

• Certification of people
 – Trainees to become trainers (IRRI’s current activities)
 – Agricultural extension
 – Operators of machinery (IRRI’s current activities)
 – Manufacturers
Testing and Certification Rationale

• Need to verify suitability/adaptability of technologies/machines in local conditions

• *Developed machines have to conform to standards*

• Establish benefits to end-users in economic and financial terms

• Identify potential issues and risks in the use and adoption of certain technologies

• Enforces culture of continues improvement for better efficiency, improved quality, less impact to environment
Postharvest value chain

Ranges in PH operations in Southeast Asia
Each percent loss also means one percent inputs wasted

Physical losses in traditional postharvest chain

- Cutting, handling: 1-5%
- Manual threshing: 1-5%
- Sun drying: 3-5%
- Open storage: 5-10%
- Village milling: 20-30%
- Small retailers

Physical losses in mechanized postharvest chain

- Machine threshing: 1-5%
- Combine harvesting: 1-5%
- Mechanical drying: 1-2%
- Sealed storage: 1-2%
- Commercial milling: 5-10%
- Large retailers

Source: Gummert, 2013
Land Preparation

- Development and testing of laser leveling technology
 - IRRI started to use the technology on the IRRI Farm by 1996 (initially for wet leveling)
 - 1996-1997: IRRI designed drag bucket; Spectra Precision provided equipment
Benefits of land leveling

Level land improves water coverage that:

- Water saving: ~ 20-25% in India*, 20-40% in Vietnam+
- Higher agronomic efficiency of nitrogen: 10-13%*
- Fuel savings for pumping: ~ 20%*
- Area increase due to field consolidation: ~ 5% in India*, 3-6% in Vietnam+
- Yield increases: 5-15% **
- Higher head rice recovery: 2% increase in Vietnam+

→ increases both grain quality and yields

Sources: * CYMMIT, # IRRI Ag. Engineering Unit, +IRRC
Multipurpose Seeder

- 2 prototypes – one attached to a 2WT with steering capability (Japan surplus, Kubota) and the other one is attached to an ordinary 2WT without steering capability (common tractors used by Filipino farmers)
- The MP Seeder can be used in dry direct seeding rice, maize planting (seeds and fertilizer), mungbean and other grain crops
- The MP seeder was tested in dry direct seeding of rice in Pangasinan State University, Sta. Maria (2015) and at IRRI Zeigler Experiment Station
Sustainability Assessment of rice straw management using LCA tool – evaluated impact of small farm equipment

- energy balance
- environmental impact

INITIAL DATA

<table>
<thead>
<tr>
<th>Operations/Treatments</th>
<th>Straw Retained (1,602.3m²)</th>
<th>Partial Straw Removal (1,718m²)</th>
<th>Complete Straw Removal (1,566m²)</th>
<th>Straw Burned (1,445.4m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puddling, 2WT (10Hp diesel engine)</td>
<td>6.49</td>
<td>6.39</td>
<td>6.0</td>
<td>5.72</td>
</tr>
<tr>
<td>Harrowing, 2WT (6.5Hp gas engine)</td>
<td>6.15</td>
<td>4.14</td>
<td>5.18</td>
<td>6.82</td>
</tr>
<tr>
<td>Leveling, 2WT (6.5Hp gas engine)</td>
<td>1.96</td>
<td>1.34</td>
<td>1.59</td>
<td>1.73</td>
</tr>
<tr>
<td>Fertilizer application (late basal, 10DAT) with Polaro spreader, 5HP gas engine</td>
<td>0.099</td>
<td>0.106</td>
<td>0.096</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Source: Adapted from Hung, et al. 2015. IRRI.
Crop Establishment/Care

- Private company **Lehner Agrar GmbH** donated spreader machine which is being tested for fertilizer and pesticide spraying - *comparing benefits of manual and mechanical options*
Crop Establishment/Care

- Adaptive experiment at farmers’ fields
 - LA platform, scaling out

The use of mechanized options for crop care (e.g., fertilizer spreading, pesticide application) is aimed at reducing labor cost, minimizing health risks, increasing efficiency and better income for the farmers.
Drying

Exhausted air

Husk furnace Fan Paddy

Drying air reversed

E.g. Vietnam: started : 1990 => 2012: 8000 units

45% wet-season crop in the MD was machine-dried ➔ reduce 2-5% loss
Reversible Airflow Flatbed Dryer

Demonstration and training of operators

Adopted by GAMAPAKA MPC with Catholic Relief Services

Transfer from Vietnam to Philippines via PhilRice

Adapted to local conditions

Business plan for dryer
Downdraft Rice Husk Furnace

- Carbon neutral, high efficiency, low pollution
- Commercialized in the Philippines (51 units sold as of July 2014)
- Transferred to Indonesia and Cambodia
Solar Bubble Dryer

- Development and testing in collaboration with Hohenheim University, Grainpro, Inc.

- Features
 - Inflated by using 2 blowers
 - Driven by 220V power grid or 12V solar panels
 - Better quality than sun drying

IRRI – Hohenheim University – GrainPro Inc.
Solar Bubble Dryer, next steps

Piloting
- Beta testing started in Cambodia and Myanmar
- Agreed to test with BPTP / UNSRI in South Sumatra, and maybe at Indonesian Center for Rice Research

Further optimization
- Larger capacity
- Reduction in power requirement
- Increase of drying temperature at low radiation
Hermetic Storage System

No energy consumed, no pesticide used

Principle

• Airtight enclosure
• Biological activity reduces O_2
• Insects die or become inactive
• Plastic controls moisture

Safe storage without pesticides

Graph showing daily drop in oxygen content in plastic bags with different oxygen permeability

Source: Gummert, 2015
Hermetic Storage: different scales

<table>
<thead>
<tr>
<th></th>
<th>Farm level – super bag</th>
<th>Farm level-GrainSafe</th>
<th>Industrial level-Cocoons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (kg)</td>
<td>3-80</td>
<td>1,000</td>
<td>(5-1050)*10³</td>
</tr>
<tr>
<td>Materials</td>
<td>Special plastic, low oxygen permeability</td>
<td>PVC</td>
<td>PVC</td>
</tr>
<tr>
<td>Price ($US)</td>
<td>2-4</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>Tested</td>
<td>SEA</td>
<td>SEA</td>
<td>Myanmar, Peru (GrainPro)</td>
</tr>
</tbody>
</table>
Testing and technology verification

- Testing and evaluation following standard protocols
- In collaboration with government (e.g., Philrice, PhilMech, DA-BES) private (e.g., Grainpro) institutions, and NGOs

Source: Adapted from Yap and Marcelino, 2012. DA-Bicol Integrated Agricultural Research Center.
Testing and technology verification

- Testing IRRI Super bag with other crops (CIMMYT)

Evaluaciones preliminares hechas en CIMMYT

- Resultados después de tres meses de almacenamiento
Rice Straw Management

• **Management options** to reduce GHGE emissions; energy balance analysis; life cycle analysis
• Piloting of technologies on alternative uses of rice straw, adding value for farmers
 - *mushroom production*
 - *soil incorporation*
 - *animal feedstock*
 - *anaerobic digestion for energy and fuel*
• Technology for rice straw collection with baler machine – **business models** development
Rice Straw Management

- Non-energy
- Energy balance
- Effects on soil
- GHG emission
- Nutrient balance
- Carbon balance

Rice straw management:
- Completely removed
- Partially removed
- Burned in the field
- Incorporated to the soil

Effects on soil:
- Laser leveling
- Tillage
- Transplanting
- Direct seeding
- Dry seeding

Crop establishment:
- Land preparation
- Crop care
- Harvesting and post harvest

Crop care:
- Water management
- Fertilizer management
- Pesticide management

Energy balance:
- Grain
- Rice hull
- Rice straw

Optimize incorporation
E.g. Using rice straw for biogas production

GHGE \rightarrow useful CH$_4$

Rice straw collection

Biogas production

Rice straw 50% (Pretreatment with biogas waste water 5 days)

Pig dung 50%
Certification

- Successful candidates are awarded **IRRI Accredited Postharvest Trainer** which qualifies them in:
 1. Practical post-production skills.
 2. Use of the IRRI Quality Kit for assessing the quality of paddy, milled rice & seeds.
 3. Understanding rice markets and rice quality standards.
Certification

- Rice: Postproduction to Market training course

(4) Selection of suitable technology and management options for post-production.

(5) Developing a project design framework and a business plan involving multiple ‘actors’ in the post-production landscape.

(6) Familiarity with post-harvest knowledge resources.
- **Laser leveling training course**

This course teach the benefits of **land leveling** and impart skills in using laser technology through field exercises and classroom discussions.

A **certificate** to accredit practitioners is being initiated.

Offered at IRRI on a full cost recovery basis.
Certification

- **Tractor safety and operators’ training certificate**

A training course aimed to update skills and knowledge of equipment operator at IRRI Experiment Station with focus on safety, maintenance and proper usage.

Present collaboration with **Technical Education Development Skills Authority** (TESDA) targets the delivery of “Agricultural Machinery Safety and Operation Training courses in the Philippines” for TESDA TVET trainers.
Tractor safety and operation training at IRRI

- Focuses on proper maintenance, correct usage, and Safety and Health for efficient operation of farm equipment.
Testing, Support to NARES, some examples

• Development of certified training courses (certification of trainers, not training courses on certification)

• Provision of test protocols to partners
 – Postharvest loss assessment protocols to FAO project in Indonesia
 – Many inquiries on a monthly basis

• Working with national partners on national test protocols

• Training on testing
 – Fan testing (Indonesia, Cambodia..)
IRRI’s comparative advantage

- Zeigler Experiment Station for **field testing under controlled conditions**
- Field testing across **different rice ecosystems, across different countries** which are on different stages on the mechanization trajectories
- **Honest broker**, no national mandate,
 - Independent institute, can provide unbiased information
 - While we work with some companies, our LOAs with them include working on technology principles, not products
- Many **linkages** to advanced agricultural research centers
Summary

• IRRI’s *mechanization* program aimed at increasing field efficiency, *reduce losses*, increase income for farmers, and *reduce environmental footprint*

• Multi-stakeholder platform (LA) embraces grassroots participation for scaling out and new models of collaboration on *public-private engagement*

• *Adaptive research* for testing technology in farmers’ fields

• Training and Certification of trainers to improve capacity of NARES and HQ staff
Acknowledgements:

Zeigler Experiment Station (ZES): Dr. James Quilty (j.quilty@irri.org)

Rainfed Agronomy Team: Dr. Yoichiro Kato (y.kato@irri.org)
/Niño Banayo (n.banayo@irri.org)

www.postharvestla.irri.org
postharvest@irri.org